Symbiodinium Photosynthesis in Caribbean Octocorals
نویسندگان
چکیده
Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals). Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9) and P. wagenaari (n = 6) colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and Symbiodinium will aid in deciphering why gorgonian corals dominate many Caribbean reefs.
منابع مشابه
Worldwide biogeography of Symbiodinium in tropical octocorals
Although octocorals are important components of coral reefs, most research on the genetic diversity of symbiotic zooxanthellae (Symbiodinium spp.) has focused on scleractinian (stony) corals. For both groups, most geographic comparisons have occurred within the same ocean or only included a few geographic sites. We characterized the genetic diversity of Symbiodinium in tropical octocorals in 15...
متن کاملFine-scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean.
The success of coral reefs is due to obligate mutualistic symbioses involving invertebrates and photosynthetic dinoflagellate symbionts belonging to the genus Symbiodinium. In the Caribbean, the vast majority of octocorals and other invertebrate hosts associate with Symbiodinium clade B, and more selectively, with a single lineage of this clade, Symbiodinium B1/B184. Although B1/B184 represents...
متن کاملStable Symbiodinium composition in the sea fan Gorgonia ventalina during temperature and disease stress.
Like most Caribbean octocorals, Gorgonia ventalina, the common sea fan, harbors endosymbiotic dinoflagellates belonging to the genus Symbiodinium. When stressed, the host can lose these algal symbionts, a phenomenon termed "bleaching." Many cnidarians host multiple types of algal symbionts within the genus Symbiodinium, and certain types of algae may be more tolerant of stress than others. We e...
متن کاملPhotosynthesis and Production of Hydrogen Peroxide by Symbiodinium (pyrrhophyta) Phylotypes with Different Thermal Tolerances(1).
Occurrences whereby cnidaria lose their symbiotic dinoflagellate microalgae (Symbiodinium spp.) are increasing in frequency and intensity. These so-called bleaching events are most often related to an increase in water temperature, which is thought to limit certain Symbiodinium phylotypes from effectively dissipating absorbed excitation energy that is otherwise used for photochemistry. Here, we...
متن کاملSymbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis
The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and wheth...
متن کامل